Learning Programme

Fundamentals of data representation- AS Level

Topic/Content	Objectives/Skills	Homework	Assessment	Stretch & Challenge (Thirst for Learning)
Number	Be familiar with the concept of a		Numerous classroom	Complete research into
systems	natural number and the set ${\mathbb N}$ of		worksheets/questions	floating point binary
	natural numbers (including zero).			
	 Be familiar with the concept of an 		Q and A's	Add additional conversion /
	integer and the set ${\mathbb Z}$ of integers.			binary calculations to the
	• Be familiar with the concept of a		Conversions	conversion program the
	rational number and the set ${\mathbb Q}$ of		programming project	students has created
	rational numbers, and that this set			
	includes the integers.		Homework worksheets	Complete research into
	 Be familiar with the concept of an 			different encryption and
	irrational number.		Past exam style questions	compression techniques
	 Be familiar with the concept of a real 			
	number and the set ${\mathbb R}$ of real		End of unit exam	
	numbers, which includes the natural			
	numbers, the rational numbers, and			
	the irrational numbers.			
	Be familiar with the concept of			
	ordinal numbers and their use to			
	describe the numerical positions of			
	objects.			
	• Be familiar with the use of:			
	 natural numbers for 			
	counting			
	o real numbers for			
	measurement.		4	
Number bases	• Be familiar with the concept of a	Conversions question		
	number base, in particular:	worksheet		

	 decimal (base 10) binary (base 2) hexadecimal (base 16). Convert between decimal, binary and hexadecimal number bases. Be familiar with, and able to use, hexadecimal as a shorthand for binary and to understand why it is 	Complete conversions program	
Units of information	 used in this way. Know that: the bit is the fundamental unit of information a byte is a group of 8 bits Know that the 2ⁿ different values can be represented with <i>n</i> bits. Know that quantities of bytes can be described using binary prefixes representing powers of 2 or using decimal prefixes representing powers of 10, eg one kibibyte is written as 1KiB = 2¹⁰ B and one kilobyte is written as 1KiB = 10³ B. Know the names, symbols and corresponding powers of 2 for the binary prefixes: kibi, Ki - 2¹⁰ mebi, Mi - 2²⁰ gibi, Gi - 2³⁰ tebi, Ti - 2⁴⁰ Know the names, symbols and corresponding powers of 10 for the decimal prefixes: kilo, k - 10³ 		

	• mega $M = 10^6$	
	$= \operatorname{dig}_{2} C = 10^{9}$	
	• giga, $G = 10^{\circ}$	
D	• tera, I - 10	
Binary number	Know the difference between	Signed and unsigned
system	unsigned binary and signed binary.	binary worksheet
	 Know that in unsigned binary the 	
	minimum and maximum values for a	
	given number of bits, <i>n</i> , are 0 and 2 ⁿ	Two's complement
	-1 respectively.	worksheet
	Be able to:	
	\circ add two unsigned binary	
	integers	
	 multiply two unsigned binary 	
	integers.	
	 Know that signed binary can be used 	
	to represent negative integers and	
	that one possible coding scheme is	
	two's complement.	
	Know how to:	
	 represent negative and 	
	positive integers in two's	
	complement	
	 perform subtraction using 	
	two's complement	
	\circ calculate the range of a given	
	number of bits <i>, n</i> .	
	Know how numbers with a fractional	
	part can be represented in:	
	\circ fixed point form in binary in	
	a given number of bits.	
	• Be able to convert from:	
	\circ decimal to binary of a given	
	number of bits	

	 binary to decimal of a given 	
	number of bits.	
Information coding systems	 Differentiate between the character code representation of a decimal digit and its pure binary representation. Describe ASCII and Unicode coding 	Error checking worksheet
	systems for coding character data and explain why Unicode was introduced.	
	 Describe and explain the use of: parity bits majority voting check digits 	
Representing	Describe how bit patterns may	Worksheet based on
images, sound	represent other forms of data.	sound
and other data	including graphics and sound.	
	 Understand the difference between 	Worksheet based on
	analogue and digital:	images
	o data	
	o signals	Complete programming
	 Describe the principles of operation of: 	project on encryption
	 an analogue to digital converter (ADC) 	
	 a digital to analogue converter (DAC). 	
	 Know that ADCs are used with 	
	analogue sensors	
	• Know that the most common use for	
	a DAC is to convert a digital audio	
	signal to an analogue signal.	

• Explain how bitmaps are represented		
• Explain the following for bitmaps:		
○ Resolution		
 colour depth 		
 o size in pixels 		
Calculate storage requirements for		
hitmanned images and he aware that		
hitman image files may also contain		
metadata		
 Be familiar with typical metadata 		
 Explain how vector graphics 		
represents images using lists of		
objects.		
Give examples of typical properties		
of objects.		
 Use vector graphic primitives to 		
create a simple vector graphic.		
Compare the vector graphics		
approach with the bitmapped		
graphics approach and understand		
the advantages and disadvantages of		
each.		
• Be aware of appropriate uses of each		
approach.		
 Describe the digital representation of 		
sound in terms of:		
 sample resolution 		
 sampling rate and the 		
Nyquist theorem		
Calculate sound sample sizes in		
hytes.		

Describe the purpose of MIDI and
the use of event messages in MIDI.
 Describe the advantages of using
MIDI files for representing music.
Know why images and sound files
are often compressed and that other
files, such as text files, can also be
compressed.
Understand the difference between
lossless and lossy compression and
explain the advantages and
disadvantages of each.
• Explain the principles behind the
following techniques for lossless
compression:
o run length encoding (RLE)
 dictionary-based methods.
Understand what is meant by
encryption and be able to define it.
Be familiar with Caesar cipher and be
able to apply it to encrypt a plaintext
message and decrypt a cinhertext
Pe able to explain why it is easily
• Be able to explain why it is easily cracked
Be familiar with vernam cipner or
one-time pad and be able to apply it
to encrypt a plaintext message and
decrypt a cipnertext.
Explain why Vernam cipher is
considered as a cypher with perfect
security

Compare Vernam cipher with ciphers		
that depend on computational		
security.		